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Abstract
The conventional Fourier transform has a well-known uncertainty relation that
is defined in terms of the first and second moments of both a function and
its Fourier transform. It is also well known that Gaussian functions, when
translated to an arbitrary centre and supplemented by a linear phase factor,
provide a complete set of minimum uncertainty states (MUSs) that exactly
achieves the lower bound set by this uncertainty relation. A similarly general
set of MUSs and uncertainty relations are derived here for discrete and/or
periodic generalizations of the Fourier transform, namely for the discrete
Fourier transform and the Fourier series. These extensions require a modified
definition for the width of a periodic distribution, and they lead to more complex
uncertainty relations that turn out to depend on the centroid location and mean
frequency of the distribution. The derivations lead to novel generalizations of
Hermite–Gaussian functions and, like Gaussians, the MUSs can play a special
role in a range of Fourier applications.

PACS number: 02.30.Nw

1. Introduction

The uncertainty relation for the Fourier transformation (FT) specifies a minimum value for
the product of the spread of a function and that of its Fourier conjugate. It was recently
shown [1] that this relation can be derived from an analogous result for the discrete Fourier
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transformation (DFT). A similar inequality was also derived in [1] for the Fourier series (FS).
That is, by considering appropriate limits, uncertainty relations for both the FT and the FS
have been shown to follow from a corresponding inequality for the DFT. Since the FS and
DFT cases involve periodic distributions, a modified measure of spread must be introduced to
replace the usual second-moment-based measure. Two observations reveal that the DFT result
serves as a unique foundation for these inequalities. First, in the limit of high localization,
the non-standard measure of spread irreversibly reduces to the usual variance. Second, a
function and its Fourier conjugate are both periodic only for the DFT. Several uncertainty
measures and associated relations for the FS and the DFT have been proposed within the
area of quantum optics, where a relation is sought between the spreads in the phase and the
number of photons. For a summary of this body of work, see the review article by Pegg and
Barnett [2].

Although the lower bound set by the uncertainty relation for the FT is attained by minimum
uncertainty states (namely Gaussian functions), this is not so for the DFT. That is, the inequality
for the discrete case is weaker than it could be. A stronger (but more complicated) inequality
can be found by explicitly constructing the associated minimum uncertainty states (MUSs).
This approach turns out to be akin to de Bruijn’s derivation [3] of the familiar uncertainty
relation. It involves the decomposition of any given distribution in terms of a basis of Hermite–
Gaussian functions. The lowest order member is precisely a Gaussian, and de Bruijn’s method
shows this to be a MUS.

In fact, Opatrný [4] has derived some preliminary results on stronger uncertainty relations
for the DFT. The generalization of the process of Hermite–Gaussian decomposition was
not considered in that work, however. Further, his analogues of Gaussians for discrete
periodic functions are limited to periodic sequences, say {am|m = 0, 1, 2, . . . ,M − 1} with
am+M = am, that are symmetric about a sample point. So, for example, am = a−m when the
centre of symmetry is chosen to fall at m = 0. However, it is also natural to consider whether
there is a periodic and discrete analogue of a Gaussian distribution that is symmetric about
a mid-point, i.e. am = a1−m. More generally, could there be MUSs that resemble samples
from a Gaussian curve that is centred at an arbitrary position with respect to the sample
points?

In its most general form, Hermite–Gaussian decomposition involves freedom in choosing
not only the centre of the associated Gaussian factor, but also its width and the frequency of the
linear phase factor that can be placed across the entire basis (i.e. the centre in Fourier space).
These freedoms are often essential to achieving an effective decomposition (i.e. smallest rms
residual for a fixed number of coefficients). If such freedoms were found for a discrete
analogue of the Hermite–Gaussian functions, they would open new options for a fractional
DFT because the possibility of varying the centre of the underlying Gaussian has not been
considered in this application [5–7]. We show that this is possible and that the same approach
is also applicable for the FS.

A central goal in the current work, therefore, is the definition of periodic generalizations
of the Hermite–Gaussian functions. These definitions are required to include the ability to
control the centre and width of the zeroth member as well as its mean frequency. By starting
with the discrete case and taking appropriate limits (as in [1]), it turns out that it is possible
to extract either a set of continuous periodic analogues of the Hermite–Gaussians or the
conventional non-periodic forms. The derivation presented here also establishes that some
of the members of these basis sets are indeed MUSs. There are some unexpected surprises,
however. To smooth the way, the general method is introduced in section 2 by rederiving
familiar results for the FT. These results are subsequently extended to the DFT in section 3,
and briefly sketched out for the FS in section 4.
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2. MUSs for the Fourier transformation

The FT and its inverse are taken to be given by

F(p) := 1√
2π

∫
f (x) e−ipx dx (2.1a)

f (x) = 1√
2π

∫
F(p) eipx dp (2.1b)

where ‘:=’ denotes a definition. It follows immediately that∫
f (x)g∗(x) dx =

∫ [
1√
2π

∫
F(p) eipx dp

]
g∗(x) dx

=
∫

F(p)

[
1√
2π

∫
g(x) e−ipx dx

]∗
dp

=
∫

F(p)G∗(p) dp. (2.2)

By choosing g = f, the norm of f is found to satisfy ‖f ‖2 := ∫ |f (x)|2 dx = ∫ |F(p)|2 dp.
The familiar uncertainty relation is expressed in terms of moments,

xj := 1

‖f ‖2

∫
xj |f (x)|2 dx (2.3a)

pj := 1

‖f ‖2

∫
pj |F(p)|2 dp = 1

‖f ‖2

∫
f ∗(x)

(
−i

d

dx

)j

f (x) dx (2.3b)

where equation (2.2) is used in equation (2.3b). In these terms, the usual measures of spread
for f and F are given by

�f := [(x − x̄)2]1/2 = (x2 − x̄2)1/2 (2.4a)

�F := (p2 − p̄2)1/2. (2.4b)

Since the Fourier transform of f (x − y) eiqx is seen from equation (2.1a) to be F(p −
q) e−i(p−q)y, it is possible to force x̄ = p̄ = 0 without changing either �f or �F : just use
y = x̄ and q = p̄. It is sufficient therefore to derive uncertainty relations, and to seek MUSs,
with the assumption that x̄ = p̄ = 0. In this case, �2

f = x2 and �2
F = p2. However, things

are not so straightforward for the DFT, so we take a more general approach here to pave the
way. Although it may appear to be a roundabout path at first sight, this analysis is vital for
clarifying the twists and turns of the DFT case.

2.1. Basics of a variational construction

Although de Bruijn’s derivation proceeds by using recurrence relations for the Hermite–
Gaussians, it is more helpful in our analysis to derive a differential equation that defines
these functions. This equation follows from the fact that we wish to minimize one functional
(say the spread in frequency space) while satisfying a set of functional constraints (e.g., a
fixed spread in coordinate space and prescribed first moments in both spaces). As a result, a
linear combination of the functional derivatives must vanish identically. The associated linear
coefficients are called the Lagrange multipliers. Note that the functionals and the Lagrange
multipliers are all real valued, and that the latter must be chosen to enforce the desired values
for the constraints.
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The functionals of interest here depend on the real and imaginary parts of f, say
f (x) = u(x) + iv(x), and perhaps on their derivatives. For a functional of the form

φ =
∫

G[x, u(x), u′(x)] dx (2.5)

the functional derivative is written here as δφ/δu and is defined so that the change in φ that
results from replacing u(x) by u(x) + ε(x) is given to first order by

�φ =
∫

δφ

δu
[x, u(x), u′(x)]ε(x) dx. (2.6)

After replacing both u(x) and u′(x) in equation (2.5), Taylor expanding and then integrating
one of the terms by parts, δφ/δu is found to be given by

δφ

δu
[x, u(x), u′(x)] = ∂G

∂u
[x, u(x), u′(x)] − d

dx

{
∂G

∂u′ [x, u(x), u′(x)]

}
. (2.7)

The functionals of interest in this section involve u, u′, v and v′:

φ0 = ‖f ‖2 =
∫

[u2(x) + v2(x)] dx (2.8a)

φ1 = ‖f ‖2x̄ =
∫

x[u2(x) + v2(x)] dx (2.8b)

φ2 = ‖f ‖2x2 =
∫

x2[u2(x) + v2(x)] dx (2.8c)

φ3 = ‖f ‖2p̄ =
∫

[v′(x) − iu′(x)][u(x) − iv(x)] dx (2.8d )

φ4 = ‖f ‖2p2 =
∫

|f ′(x)|2 dx =
∫

[u′2(x) + v′2(x)] dx. (2.8e)

All the constraints as well as the functional to be minimized can be written as simple algebraic
combinations of these five basic entities. It follows that a linear combination of the functional
derivatives must vanish identically. Equation (2.7) can be used to see that this condition can
be expressed as

(0, 0) ≡
∑

k

Lk

(
δφk

δu
,
δφk

δv

)

= 2[L0(u, v) + L1x(u, v) + L2x
2(u, v) + L3(v

′,−u′) + L4(u
′′, v′′)] (2.9)

where Lk are the Lagrange multipliers. All entities in equation (2.9) are real, and if the
first component of this identity is added to i times the second, it follows that any MUS must
satisfy

L4f
′′(x) − iL3f

′(x) + [L0 + L1x + L2x
2]f (x) = 0. (2.10)

Strictly speaking, there is one more Lagrange multiplier than necessary here: equations (2.9)
and (2.10) can be divided through by, say, L4 (which was included only as a formal
convenience).
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2.2. Hermite–Gaussian eigenstates

The next step is to find values for the Lagrange multipliers for which equation (2.10) possesses
normalizable solutions. In particular, we will seek those with the desired values of x̄, p̄ and
�f . By globally changing sign on all the Lagrange multipliers (which leaves equation (2.10)
effectively unchanged), attention can be restricted to the case L2 > 0 without loss of generality.
It then turns out that, to admit normalizable solutions,L4 must be negative. It is then convenient
to multiply equation (2.10) throughout by 1/

√
L2 |L4| so that it can be rewritten as

�̂f (x) = λf (x) (2.11)

where

�̂(w, s, t) := w−2(x − s)2 + w2

(
−i

d

dx
− t

)2

. (2.12)

(For compactness, the arguments of the operator �̂ are typically omitted.) Upon expanding the
right-hand side of equation (2.12) it is straightforward to compare equations (2.11) and (2.10)
to find the unique map between the four independent values from among 	k := Lk/

√
L2 |L4|

(hence 	2 = −1/	4) and the new parameters, namely w, s, t and λ.
Equation (2.11) has solutions that remain finite in the limits of large x only for discrete

values of λ, say λ = λj where j = 0, 1, 2, . . .. These eigenfunctions of �̂ satisfy

�̂ψ(j)(w, s, t; x) = λjψ
(j)(w, s, t; x) (2.13)

where λj may be expected to depend on w, s and t. It turns out that

ψ(j)(w, s, t; x) = w−1/2 eixthj

(
x − s

w

)
(2.14)

with

hj (u) := Hj(u) e−u2/2/√Nj . (2.15)

Here, Hj(u) is the Hermite polynomial of order j, and the normalization constant is given by
Nj := ∫

H 2
j (u) e−u2

du = 2j j !
√

π . The dimensionless eigenvalues turn out to be given by

λj = 2j + 1. Since �̂ is Hermitian, its eigensolutions are orthogonal and complete. That is,
any function can be expressed in the form

f (x) =
∞∑

j=0

cj (w, s, t)ψ(j)(w, s, t; x) (2.16)

where

cj (w, s, t) :=
∫

ψ(j)∗ (w, s, t; x) f (x) dx. (2.17)

2.3. Hermite–Gaussians as MUSs

Upon writing (x − s) = [(x − x̄) − (s − x̄)] and doing the same for the conjugate term, it is
easy to show from equation (2.12) that∫

f ∗(x)�̂f (x) dx = {
w−2 [�f

2 + (x̄ − s)2] + w2 [�F
2 + (p̄ − t)2]} ‖f ‖2. (2.18)
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Alternatively, it follows from equations (2.13), (2.16), (2.17) and the linearity of �̂ that∫
f ∗(x)�̂f (x) dx =

∫
f ∗(x)�̂

∞∑
j=0

cj (w, s, t)ψ(j)(w, s, t; x) dx

=
∫

f ∗(x)

∞∑
j=0

cj (w, s, t)λj ψ
(j)(w, s, t; x) dx

=
∞∑

j=0

λj cj (w, s, t)

[∫
ψ(j)(w, s, t; x)f ∗(x) dx

]

=
∞∑

j=0

λj |cj (w, s, t)|2. (2.19)

It follows similarly that

‖f ‖2 :=
∫

|f (x)|2 dx =
∞∑

j=0

|cj (w, s, t)|2. (2.20)

Equations (2.18), (2.19) and (2.20) lead immediately to

w−2 [�f
2 + (x̄ − s)2] + w2 [�F

2 + (p̄ − t)2] =
∑∞

j=0 λj |cj (w, x̄, p̄)|2∑∞
j=0 |cj (w, x̄, p̄)|2 � λ0 = 1. (2.21)

The inequality in equation (2.21) follows upon reducing the numerator by replacing λj by λ0

throughout the sum.
When values are prescribed for �f , x̄ and p̄, it is straightforward to solve equation (2.21)

to find a lower bound for �F . The resulting relation is necessarily satisfied for all values of w,
s and t. These values can thus be chosen to maximize this lower bound. This leads to s = x̄,
t = p̄ and w−2 = 1

/(
2�f

2
)
, and the standard Fourier uncertainty relation results:

�f �F � 1
2 . (2.22)

An alternative approach leads directly to the MUSs, however. It follows from
equation (2.21) that the inequality becomes an equality when f (x) is precisely the ground
state, i.e. only the first term in each of the sums is non-zero. The goal instead, therefore, is to
choose values for w, s and t to ensure that the properties of the resulting ground state match the
desired values of �f , x̄ and p̄. Since the ground state is given explicitly by equation (2.14),
this process is straightforward. It again turns out that s = x̄, t = p̄ and w−2 = 1

/(
2�f

2
)
,

but now for a different reason. As a result, the only MUSs (i.e. states that attain the limit set
by equation (2.22)) are proportional to

ψ(0)(w, x̄, p̄; x) = w−1/2π−1/4 eip̄x e−(x−x̄)2/2w2
(2.23)

for any positive w and real values of x̄ and p̄. This result sets the expectation that MUSs
should be sought for the DFT with any prescribed values for the width, centroid location, and
mean frequency. The generalization of this treatment to the case of discrete periodic functions
is the principal goal of what follows.

3. MUSs for the discrete Fourier transformation

The DFT and its inverse map the periodic sequence {am : m = 0, 1, 2, . . . ,M − 1} to its
conjugate sequence and back via
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An := 1√
M

∑
m

am e−i2πmn/M (3.1a)

an = 1√
M

∑
m

Am ei2πmn/M. (3.1b)

The periodicity of these sequences, i.e. am+M = am and Am+M = Am for all m, follows directly
from these relations. Unless indicated otherwise, all sums are taken over a full period. A
couple of standard properties of the DFT are used repeatedly below. First, shifting a sequence
generates a phase on the conjugate sequence:

1√
M

∑
m

am+j e−i 2π
M

mn = 1√
M

∑
m′

am′ e−i 2π
M

(m′−j)n

= ei2πjn/MAn. (3.2)

Also, an analogue of equation (2.2) follows in the familiar manner:∑
m

a∗
mbm =

∑
m

A∗
mBm. (3.3)

Note that there is a clear distinction between coordinate space and frequency space in the
previous section, and this has traditionally allowed for careless notation. For example, if we
are considering the distribution f (x), it is dimensionally inconsistent to write f (p) as a rule,
thus x̄ necessarily characterizes f and not F. However, since it is meaningful to write both am

and Am, it is now awkward to distinguish properties of a sequence by using notation such as
m̄ or �m; it is better to involve the kernel symbol itself in place of the index (i.e. use a or A
instead of m). It turns out that the notions of centroids and spreads of periodic distributions
also raise more significant difficulties [8]. Some of these issues are now reviewed before we
consider minimum uncertainty. Appropriate notation is introduced as part of this discussion.

3.1. Uncertainty relation for the DFT

Moments of m do not respect the periodicity of am: instead of being at the far end of the
sequence, aM−1 is an immediate neighbour of a0. That is, the sequence effectively resides on
a ring. Definitions of centroid and width that respect this property were applied by Bandilla
and Paul [1, 4, 9]. The relevant ideas follow naturally upon considering the centre of mass
of an array of weights that are uniformly distributed around the rim of the unit disc and have
masses proportional to |am|2, and similarly for the conjugate domain,

Sa := 1

‖a‖2

∑
m

|am|2 exp

(
i
2π

M
m

)
= 1

‖a‖2

∑
m

A∗
mAm−1 (3.4a)

SA := 1

‖a‖2

∑
m

|Am|2 exp

(
i
2π

M
m

)
= 1

‖a‖2

∑
m

a∗
mam+1 (3.4b)

where ‖a‖ is the norm of the sequences:

‖a‖2 :=
∑
m

|am|2 =
∑
m

|Am|2. (3.5)

(The second equality in each of equations (3.4a), (3.4b) and (3.5) follows directly from
equations (3.2) and (3.3).) The centroid and width of am can now be characterized by

µa := M

2π
arg(Sa) (3.6a)
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Figure 1. Once a periodic sequence is mapped to point masses that are uniformly distributed
around the perimeter of a unit disc, measures of the spread and centroid of the sequence follow
intuitively as shown. The centre of mass is marked as a cross. Either σa , τa , or �a , can be used as
measures of spread, while µa characterizes the sequence’s centroid location.

τa :=
√

1 − |Sa|2/|Sa| (3.6b)

where arg is taken to return a value between 0 and 2π . Those for the conjugate sequence are
found by replacing a throughout equations (3.6a) and (3.6b) by A.

Note that, in contrast to the moments of m, a shift in the interval of summation in
equations (3.4)–(3.5) does not change the results; all that is required is that the sums extend
over a full period. As illustrated in figure 1, µa is the index value (modulo M) for the
distribution’s centroid. On the other hand, τa may be appreciated better by observing that
it changes from zero to infinity as the centre of mass, i.e. Sa , moves from the edge of the
unit disc in towards the centre. This is in keeping with the associated level of localization
in the distributions that can lead to these positions for the centre of mass. More specifically,
notice that

√
1 − |Sa|2 is just half of the length of the shortest chord that contains the centre

of mass. Therefore τa is just the tangent of the angle subtended at the disc’s centre by half
of this chord. For some applications, it may be more intuitive to convert this angle to a
corresponding change in index by using much the same process as in equation (3.6a), i.e.
consider �a := (M/2π) tan−1(τa). There are a number of such options, but the essential idea
is that the localization increases with |Sa|. Also note that, when |Sa| is zero, there is no
preferred direction in the distribution and it is satisfying therefore that arg(Sa), hence µa , is
no longer well defined.

In these terms, it was shown in [1] that the uncertainties for a DFT pair must satisfy a
relation that resembles equation (2.22):

τaτA � sin(π/M). (3.7)

As indicated in the introduction, because there are no sequences that attain the associated lower
bound on τA for a given (finite and non-zero) value of τa , this inequality can be strengthened
by directly constructing MUSs. Following the comments at the end of section 2 regarding
complete sets of MUSs, we now anticipate specifying a MUS by prescribing values for its
width, its mean index value and its mean frequency. As a result, it is plausible that the lower
limit on τA may now depend not only on τa , but also on µa and µA. We show in what follows
that this is indeed the case.



Uncertainty relations and MUSs for the discrete Fourier transform and the Fourier series 7035

Figure 2. For any M, the algebraic relation in equation (3.8) indicates that the spreads for all
sequences and their DFT conjugates must map to points that sit above a particular curve within the
unit square having coordinates (σa, σA). The curves are shown here for selected values of M. For
M �= 2, however, it turns out that these boundaries can be tightened because no states touch any
point on the curves other than their common endpoints.

For graphical purposes, it is convenient to express equation (3.7) in terms of a measure of
spread that is bounded. For example, we can use the sine of the angle mentioned in the previous
paragraph, i.e. σa :=

√
1 − |Sa|2, which varies from zero (when the distribution is localized

at a single point) to unity (when it is maximally delocalized). In these terms, equation (3.7)
becomes (

σ 2
a + T 2

) (
σ 2

A + T 2
)

� T 2(1 + T 2) (3.8)

where T := tan(π/M). As shown in figure 2, in the space with coordinates (σa, σA), only the
unit square is accessible, and equation (3.8) excludes a region of this square. The excluded
region shrinks as M grows. Extending these excluded regions to their maximal size is one
of the main goals of what follows. More generally, we consider the lower limit on σA as a
function of σa, µa and µA (as well as M, of course). This is obviously more difficult to present
graphically. Note, however, that the lower limit can depend only on the fractional parts of µa

and µA. This is a consequence of the option of shifting a sequence by an integral number of
sample spaces and of also generating an integral shift in its conjugate sequence by including a
periodic linear phase (see equation (3.2)). Further, by swapping am and a−m (which changes
the sign of µa but leaves σa unchanged), it is clear that we need consider values of µa only
between 0 and 1

2 . Similarly, since am can be replaced by a∗
m (which swaps Am and A−m), we

can also restrict attention to µA between 0 and 1
2 .

The domain to be explored is evidently further reduced by the fact that the centre of mass
necessarily falls within the polygon that connects the point masses on the ring of figure 1.
That is, |Sa| and arg(Sa)—hence σa and µa—cannot be prescribed arbitrarily. For M = 1, the
centroid is always at the edge of the ring for both the original sequence and its conjugate, so
σa = σA = 0 and µa = µA = 0. Since equation (3.8) reduces to σ 2

a σ 2
A � 0, all non-zero

sequences are therefore MUSs for this trivial case. For M = 2, the polygon is just a line
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Figure 3. The centre of mass for a ring of M point masses must lie within the associated polygon.
This brings intuitive constraints on µa and |Sa |.

segment, it is thus sufficient to consider only µa = µA = 0. As a result, the strengthened
uncertainty relation will be able to be shown as a single curve. Note also that, in this case,
equation (3.8) becomes σ 2

a +σ 2
A � 1. In fact, it is straightforward to show that any sequence of

two real numbers satisfying a0 > a1 > 0 attains this limit. Translation and/or phasing (which
amounts to interchanging the two elements and/or making a sign change on one element) then
generate the complete set of MUSs for this simple case. In other words, equation (3.8) cannot
be strengthened for M � 2.

For M > 2, it is evident that when the centroid is further from the origin than some points
on the polygon, µa is then confined to a tighter domain. As indicated in figure 3, a simple
geometric analysis of the polygon reveals that, when |Sa| = √

1 − σ 2
a � cos(π/M), µa is

now restricted by

0 � µa � 1

2
− M

2π
cos−1

[
cos

( π

M

)/√
1 − σ 2

a

]
. (3.9)

In these cases, we can consider making multiple plots of the lower limit on σA as a function
of σa for various fixed values of µa and µA between 0 and 1

2 . As a result of equation (3.9),
these curves are defined only where

σa �
√

sin

(
2π

M
µa

)
sin

[
2π

M
(1 − µa)

]/
cos

[ π

M
(1 − 2µa)

]
. (3.10)

A similar relation holds with all subscripted a replaced by A. Together, these inequalities
mean that strips of the unit square along the left and bottom edge in figure 2 are excluded by
elementary considerations. The width of the excluded strips grows monotonically from zero
at µ = 0 to sin(π/M) at µ = 1

2 . (Note that, in keeping with the comments of the previous
paragraph, these strips exclude the entire domain unless µa = µA = 0 for M = 2.) For M > 2
and µa �= 0 and/or µA �= 0, the curves for the MUSs will now exclude part of this truncated
unit square. The challenges are to determine just how much the relation in equation (3.8)
can be strengthened for various values of M and µa,µA ∈ [0, 1

2

]
, and what form the associated

MUSs take.
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3.2. Discrete analogues of Hermite–Gaussian functions

If am is separated into real and imaginary parts as am = xm + iym, the analogues of the five
functions in equations (2.8) take the form

φ0 = ‖a‖2 =
∑

n

(
xn

2 + yn
2
)

(3.11a)

φ1 = ‖a‖2 Re(Sa) =
∑

n

(
xn

2 + yn
2
)

cos

(
2π

M
n

)
(3.11b)

φ2 = ‖a‖2 Im(Sa) =
∑

n

(
xn

2 + yn
2) sin

(
2π

M
n

)
(3.11c)

φ3 = ‖a‖2 Re(SA) =
∑

n

(xnxn+1 + ynyn+1) (3.11d )

φ4 = ‖a‖2 Im(SA) =
∑

n

(xnyn+1 − ynxn+1). (3.11e)

That is, as indicated in equations (3.4) and (3.6), a sequence’s centroids and spreads in both
domains follow simply from the five entities in equations (3.11). Each of these entities is a
real-valued function of 2M real variables, namely the x and y. If any one entity is extremized
while the others are held constant, a linear combination of their gradients must vanish. This
condition can be written as

(0, 0) ≡
∑

k

Lk

(
∂φk

∂xm

,
∂φk

∂ym

)

= 2

[
L0(xm, ym) + L1 cos

(
2π

M
m

)
(xm, ym) + L2 sin

(
2π

M
m

)
(xm, ym)

+ L3(xm+1 + xm−1, ym+1 + ym−1) + L4(ym+1 − ym−1, xm−1 − xm+1)

]
(3.12)

which is an identity over m.
All quantities in equation (3.12) are real. If the first component of this identity is added

to i times the second, it follows that any MUS must satisfy

0 =
[
L0 + L1 cos

(
2π

M
m

)
+ L2 sin

(
2π

M
m

)]
am + L3(am+1 + am−1) − iL4(am+1 − am−1)

=
{
L0 +

√
L1

2 + L2
2 cos

[
2π

M
(m − s)

]}
am

+
√

L3
2 + L4

2
[
ei 2π

M
tam−1 + e−i 2π

M
tam+1

]
(3.13)

where s and t are related simply to the original Lagrange multipliers. (Again, a superfluous
Lagrange multiplier has been included as a formal convenience.) As in section 2.2, the next
step is to find values of the Lagrange multipliers for which equation (3.13) has solutions of the
desired form. In order to draw a close parallel with equations (2.11) and (2.12), it is convenient
to rewrite equation (3.13) as an eigenvalue relation involving an operator of the form

�̂(w, s, t,M)am := 2w−2

{
1 − cos

[
2π

M
(m − s)

]}
am

− w2
[
ei 2π

M
tam−1 − 2am + e−i 2π

M
tam+1

]
. (3.14)
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Figure 4. Plots of the first eight eigenvectors for the case M = 16 (with half-integral s and t = 0).
These eigenvectors always display a clear resemblance to the familiar Hermite–Gaussian functions.
Note the states have been translated so that the zeroth element sits at the centre of each plot.

This operator can be represented by a tridiagonal Hermitian matrix that multiplies the vector
with elements am. The identification of equation (3.13) as �̂am = λam is straightforward once
equation (3.13) is multiplied throughout by a factor of

[(
L1

2 + L2
2
)(

L3
2 + L4

2
)/

4
]−1/4

.
The discrete analogues of the Hermite–Gaussian functions are proportional to the

normalized eigenvectors of �̂. That is, they are given by sequences of numbers φ
(j)
m defined

by the relation

�̂φ(j)
m (w, s, t,M) = λj (w, s, t,M) φ(j)

m (w, s, t,M) (3.15)

for j = 0, 1, 2, . . . , M − 1. It follows from equation (3.14) that �̂ is Hermitian, hence its
eigenvalues are real. Note that, as written in equation (3.14), �̂ is a sum of two terms, one of
which is diagonal and clearly positive semi-definite. As follows from equations (3.2) and (3.3),
the other takes the form of the former’s DFT conjugate, so it is also positive semi-definite.
The eigenvalues of �̂ are therefore non-negative (and it is not difficult to show that they are
strictly positive). We choose to order them in increasing magnitude, i.e. λ0 is the smallest.
Also, the eigenvectors form a complete set and, for distinct eigenvalues, they are orthogonal,∑

m

φ(j)∗
m (w, s, t,M)φ(j ′)

m (w, s, t,M) = δj,j ′ (3.16)

when λj (w, s, t,M) �= λj ′(w, s, t,M). (For degenerate eigenvalues, the eigenvectors can be
orthogonalized as a separate step.) A sample of eigenvectors is plotted in figure 4.

In contrast to the results in section 2, however, both the eigenvalues and the eigenvectors
now depend on w, s and t, as well as on M. It is evident from the definition of �̂ that integer
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changes in s and t do not change the eigenvalues, but generate an index shift and a linear phase
factor, respectively, on the eigenvectors,

λj (w, s + k, t + 	,M) = λj (w, s, t,M) (3.17a)

φ(j)
m (w, s + k, t + 	,M) = ei2π	m/Mφ

(j)

m−k(w, s, t,M) (3.17b)

where k and 	 are integers. Note that, although the eigenvectors are taken to be normalized,
each has an arbitrary global phase factor. (Thus, in general, there is the possibility of an extra
phase term in equation (3.17b).) The effect of continuous variation in the parameters of the
ground state is illustrated in figure 5. Changing the width and centroids evidently has precisely
the expected effect.

3.3. Lower limit for the conjugate width

Any sequence can now be expressed in terms of �̂ eigenvectors,

am =
M−1∑
j=0

cj (w, s, t,M)φ(j)
m (w, s, t,M) (3.18)

where

cj (w, s, t,M) =
∑
m

φ(j)∗
m (w, s, t,M)am. (3.19)

In the usual way, the norm defined in equation (3.5) can be shown to satisfy

‖a‖2 =
M−1∑
j=0

|cj (w, s, t,M)|2 (3.20)

and it follows similarly that

∑
m

a∗
m�̂am =

M−1∑
j=0

λj (w, s, t,M)|cj (w, s, t,M)|2. (3.21)

However, it follows from equation (3.14) that∑
m

a∗
m�̂am = 2‖a‖2

(
w−2

{
1 − |Sa| cos

[
2π

M
(s − µa)

]}

+ w2

{
1 − |SA| cos

[
2π

M
(t − µA)

]})
. (3.22)

Upon combining equations (3.20), (3.21) and (3.22), an analogue of equation (2.21) results:

w−2

{
1 − |Sa| cos

[
2π

M
(s − µa)

]}
+ w2

{
1 − |SA| cos

[
2π

M
(t − µA)

]}

=
M−1∑
j=0

λj (w, s, t,M)|cj (w, s, t,M)|2
/

2
M−1∑
j=0

|cj (w, s, t,M)|2

� 1

2
λ0(w, s, t,M). (3.23)

Upon isolating |SA| in equation (3.23), it is possible to consider choosing s, t and w in order
to minimize the resulting upper bound. Since the dependence of λ0 on its arguments is
non-trivial, however, this approach cannot be completed in closed form.
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s = 0
s = 0.25
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t = 0.5
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t = 0

w = 1
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w = 2

8
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arg[φ(0)]m

(a)

(b)

(c)

Figure 5. (a) The zeroth eigenstate is plotted for various values of w with s = t = 0. (b) The
zeroth eigenstate is plotted for various values of s with t = 0. The case s = 0.5 is shown with a
thick connecting line to highlight this Gaussian analogue that is centred at a mid-point. (c) The
phase of the zeroth eigenstate is plotted for various values of t with s = 0. Note that, when t = 0.5,
a8 vanishes, so the phase is indeterminate at that point.

Fortunately, an alternative approach of the type discussed after equation (2.22) remains
straightforward: if only the ground state contributes to the sums, the bound can be attained.
That is, the task is now to find values of s, t and w for which the ground state, i.e. φ(0)

m , has
a centroid, mean frequency and width that match the prescribed values of µa , µA and σa . Of
course, this is feasible only when the relation in equation (3.10) is satisfied.
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By anticipating that the modulus of the ground state will take the form of a single-lobed
Gaussian-like distribution, it is possible to deduce the position at which the curve marking
out the perimeter of the accessible domain in (σa, σA)-space will meet the limit given in
equation (3.10). When µa �= 0, at least two coefficients must be non-zero. In particular, in
the limit of high localization with 0 < µa < 1

2 , all but a0 and a1 can be expected to vanish. It
follows from equations (3.4)–(3.6) that

tan

(
2π

M
µa

)
= (1 − α2) sin

(
2π

M

)/[
α2 + (1 − α2) cos

(
2π

M

)]
(3.24)

|SA| = |a∗
0a1|/‖a‖2 = α

√
1 − α2 (3.25)

where α := |a0|/‖a‖. Upon solving equation (3.24) for α and using the result in
equation (3.25), it follows that the bound associated with the ground state will meet the
limit set by equation (3.10) at

σA =
√√√√1 − sin

(
2π
M

µa

)
sin
[

2π
M

(1 − µa)
]

{
sin
(

2π
M

µa

)
+ sin

[
2π
M

(1 − µa)
]}2 . (3.26)

Recall that σA :=
√

1 − |SA|2. When σA exceeds the value given in equation (3.26), pure
eigenstates other than the ground state must set the boundary of the accessible region in
(σa, σA)-space. As with equation (3.10), a partner to equation (3.26) follows upon exchanging
a and A throughout.

Symmetry can be used to show that when both s and t are either integers or half-integers,
µa and µA are similarly restricted (i.e. again either integer or half-integer). This observation
greatly simplifies the process of finding the values of s and t that give the desired solutions
when (µa, µA) is either (0, 0),

(
0, 1

2

)
,
(

1
2 , 0

)
or
(

1
2 , 1

2

)
. Because of the symmetry between

the DFT and its inverse, the middle two cases are trivially related. We therefore restrict our
attention to just three cases, namely (0, 0),

(
0, 1

2

)
and

(
1
2 , 1

2

)
. It turns out, however, that

odd and even values of M require separate treatments. Note that the partner to equation
(3.26) (with a and A exchanged) indicates that the section of the boundary of the accessible
region that is traced out by the ground state is expected to extend only out to σa = √

3/2
for all M when µA = 1

2 . We emphasize that solutions can be found in much the same way
for any values of (µa, µA); the special cases considered here are sufficient to illustrate the
results.

3.4. Bounds for even values of M

The accessible region of (σa, σA)-space for M = 4 is shown in figure 6(a) for the three selected
values of (µa, µA). The region excluded by the bounding curve for the case (µa, µA) = (0, 0)

is shaded in black. The points on the curve are found by computing the ground state for various
values of w with s = t = 0 in all cases. The simple algebraic bound given in equation (3.8)
is shown as the dashed white line. The MUSs evidently mark out a significantly strengthened
inequality. It so happens that the strengthened bound for M = 4 coincides precisely with the
bound for M = 2 (which was discussed in the paragraph preceding equation (3.9)).

The boundary curve for (µa, µA) = (
0, 1

2

)
is shown as the dashed grey line. Even

more of the space is excluded in this case, i.e. the uncertainty relation is now even stronger.
This curve is made up of two components. The first segment has negative slope and is
found by determining the ground state for various values of w, while the remaining segment
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Figure 6. The spreads for any sequence and its DFT conjugate must map to a point that sits in a
region that is bounded by a curve within the unit square having coordinates (σa, σA). The curve is
found to depend on µa and µA. The curves are shown for (a) M = 4, (b) M = 8, (c) M = 16 and
(d ) M = 64. The white dashed curves are given by the weak bound presented in equation (3.8).
It turns out that only the light-grey region is accessible when (µa, µA) = (0, 0). The dashed grey
line shows that the boundary is even higher for (µa, µA) = (0, 1

2 ). The tightening is even more
extreme for (µa, µA) = ( 1

2 , 1
2 ), as shown by the solid black line.

(for σa >
√

3/2) uses the first excited state. In both cases, s = 0 and t = 1
2 while w is

varied in order to sweep out the curves. When this curve reaches (σa, σA) = (1, 1), it turns
out that the first excited state is degenerate. Such degeneracies often introduce subtleties in
these calculations. Also note that the curve for the case (µa, µA) = (

1
2 , 0

)
can be found by

interchanging the axes (i.e. reflecting the plot about the 45◦ line).
The black curve in figure 6(a) corresponds to (µa, µA) = (

1
2 , 1

2

)
. The area of the

admissible region is clearly smallest for this case. This curve is made up of three segments,
although it involves only two of the eigenstates. The segment where the curve has negative
slope is found by computing the ground state for various values of w, while the other two
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segments use the first excited state. In all cases, s = t = 1
2 , and w is varied in order to

sweep out the curves. Note that this composite curve no longer corresponds to a single-valued
function. In the region where it is double valued (i.e. σa just larger than sin(π/4)), there is
evidently not only a minimum uncertainty state for each value of σa , but there is sometimes a
non-trivial maximum uncertainty state. That is, the largest possible value of σA is sometimes
less than unity.

The plots described above are also presented for M = 8, 16 and 64 in figures 6(b), (c) and
(d ), respectively. Note that, as M increases, more of the space becomes accessible and all of
the bounds approach the simple algebraic relation given in equation (3.8). As discussed in [1],
in the limit of large M, this relation corresponds to the standard relation of equation (2.22). For
smaller values of M, however, significant differences are associated with the various choices
for centroid locations. What is more, the algebraic relation can obviously be strengthened
significantly for small M.

3.5. Bounds for odd values of M

When M is odd, the sequences have different symmetry properties. For example, consider a
sequence that has an integral value of µa , but is highly delocalized (i.e. its centre of mass is
close to the centre of the disc). Any change to the sequence that moves the centroid over the
centre of the disc will change µa to a half-integer when M is odd, but not when M is even. As
a result, choosing s or t to be zero can (for some values of w) lead to half-integral values of
the eigenstate’s centroids when M is odd. This means that extra care is needed in exploring
the bounds for these cases.

The accessible regions of the uncertainty domain are plotted in figure 7 for a sample of
odd values of M. The graphical conventions are the same as those used in figure 6. Once M
reaches 64 or more, there is little apparent difference between the plots for M and for M + 1, so
we have chosen to present only up to M = 15 in figure 7. The boundary for (µa, µA) = (0, 0)

in all cases is found by computing the ground state for various values of w with s = t = 0.
As found by Opatrný [4], this strengthened bound for µa = µA = 0 and M = 3 turns out to
be even more stringent than the bound for M = 2. However, this bound progressively loosens
for all M beyond 3.

For M > 3, the curves for (µa, µA) = (
0, 1

2

)
are made up of two components. The first

segment has negative slope and is found by determining the ground state for various values of
w, while the remaining segment (for σa >

√
3/2) uses the first excited state. In both cases,

s = 0 and t = 1
2 while w is varied in order to sweep out the curves. Once again, M = 3 is

exceptional: the second segment for this case is found by using s = t = 0.
For M > 3, the curves for (µa, µA) = (

1
2 , 1

2

)
are composed of three segments. The

segment where the curve has negative slope is found by computing the ground state for
s = t = 1

2 and various values of w. The other two segments use the first excited state with
s = 0 and t = 1

2 for one case, and s = 1
2 with t = 0 for the other. In this case, M = 3 is

a striking exception because the bound for this case cannot be found by using either integer
or half-integer values of s. It turns out that the boundary curve is swept out by using the first
excited state with t = 1

2 and varying w while choosing

s = 3

2π
arg

[
27 − 4w8 + i

(
9
√

3 + 4w4
√

9 − w8
)]

. (3.27)

Thankfully, this is the only instance where these four special cases of integral and half-integral
centroids require non-trivial values for the Lagrange multipliers.
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Figure 7. The curves presented in figure 6 are shown here for a sample of odd values of M, namely
(a) M = 3, (b) M = 5, (c) M = 7 and (d ) M = 15.

4. MUSs for the Fourier series

The Fourier series for a continuous function of period 2π takes the form

g(θ) = 1√
2π

∞∑
k=−∞

Gk eikθ (4.1)

where

Gk := 1√
2π

∫ 2π

0
g(θ) e−ikθ dθ. (4.2)

Two results that are used repeatedly below follow directly from equations (4.1) and (4.2):∫ 2π

0
g∗(θ)h(θ) dθ =

∞∑
k=−∞

G∗
kHk (4.3a)
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‖g‖2 :=
∫ 2π

0
|g(θ)|2 dθ =

∞∑
k=−∞

|Gk|2. (4.3b)

The centroid and spread of g are characterized in a similar fashion to that used in the
discrete case,

µg := arg(Sg) (4.4a)

τg :=
√

1 − |Sg|2
/|Sg| (4.4b)

where

Sg := 1

‖g‖2

∫ 2π

0
|g(θ)|2 eiθ dθ = 1

‖g‖2

∞∑
k=−∞

G∗
kGk−1. (4.5)

On the other hand, the centroid and spread of the Fourier coefficients are defined in the
traditional way as

k̄ := 1

‖g‖2

∞∑
k=−∞

k|Gk|2 = −i

‖g‖2

∫ 2π

0
g∗(θ)g′(θ) dθ (4.6a)

�G
2 := 1

‖g‖2

∞∑
k=−∞

(k − k̄)2|Gk|2 = 1

‖g‖2

∫ 2π

0
g∗(θ)

(
−i

d

dθ
− k̄

)2

g(θ) dθ. (4.6b)

It has been shown [1, 10] that the uncertainty relation for the FS can be written as

τg�G � 1
2 . (4.7)

Equality in relation (4.7) can be approached only as either one of the two spreads approaches
zero, so this relation can also be strengthened.

The true lower bound is found by following a procedure that is analogous to those adopted
in the previous sections. Again, an eigenvalue equation results upon introducing Lagrange
multipliers:

�̂g(θ) :=
{

2w−2[1 − cos(θ − s)] + w2

(
−i

d

dθ
− t

)2
}

g(θ) = λg(θ). (4.8)

The solutions to equation (4.8) have the form

φj(θ) := exp(itθ)√
2π

(
aMc

{
A[−2(j + t), 4w−4], 4w−4,

θ − s

2

}

+ bMc

{
B[−2(j + t), 4w−4], 4w−4,

θ − s

2

})
(4.9)

where Mc and Ms are the even and odd Mathieu functions, respectively, and A and B are the
so-called Mathieu characteristic values [11, 12]. The coefficients a and b, which depend on j
and t, must be chosen to ensure the periodicity of φj . For example, for the t = 0 case, a must
be set to zero for odd j while b must vanish for even j. For t = 1/2 it is a that must vanish
for even j and b for odd j. When t is neither an integer nor a half-integer, both coefficients
must be non-zero. (Only when t is neither an integer nor a half-integer are the eigenvalues
of both types of Mathieu functions degenerate, so linear combinations are valid solutions to
the eigenvalue equation.) Also, as in the discrete case, only when t is either an integer or a
half-integer does it coincide with k̄ for all w.

In order to show the allowed regions for the uncertainty measures, it is convenient to
define finite measures of spread analogous to those in section 3. Thus the spreads of g and G
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Figure 8. The spreads for a periodic function and its Fourier coefficients must map to a point
that sits above a curve within the unit square having coordinates (σg, δG). The boundary curve
is found to depend on k̄. The white dashed curve is given by the weak bound presented in
equation (4.10). It turns out that only the light-grey region is accessible for any integer value of k̄.
The dashed dark-grey line corresponds to the boundary (which has moved even higher) when k̄ is
a half-integer.

are quantified by σg :=√1 − |Sg|2 and δG :=�G

/√
�G

2 + 1/4, respectively. In these terms,
the inequality in equation (4.7) becomes simply

σg
2 + δG

2 � 1. (4.10)

Figure 8 shows the allowed regions for the uncertainty measures for the two extreme cases,
corresponding to k̄ being integer and half-integer. These are compared in the figure with
the simple algebraic (albeit unattainable) bound of equation (4.10). Note that the bounds are
independent of µg. The lower bound for integer k̄ was obtained from the ground state ( j = 0,
b = 0) in equation (4.9), with t = 0 and for varying w. As in the DFT case, both the ground
state ( j = 0, a = 0) and the first excited state ( j = 1, b = 0) had to be used in generating the
lower bound plot for half-integer k̄

(
t = 1

2

)
.

5. Concluding remarks

There are a number of surprises that emerged in this analysis. For example, it was unexpected
that the uncertainty bounds would be dependent on the positions of a distribution’s centroids.
Also, given the discussion of equations (2.21) and (2.22), the role of the first excited states
in marking out sections of the boundary in sections 3 and 4 is perhaps unintuitive. More
strikingly, the notion of non-trivial ‘maximum uncertainty states’ (as mentioned in section 3.4)
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enters whenever µa , µA or k̄ take non-integer values. Perhaps most unexpected of all,
however, was the special treatments that were needed for M = 3 in section 3, most notably
equation (3.27). Whenever µa and µA are neither integers nor half-integers, the Lagrange
multipliers will be coupled non-trivially (as in equation (3.27)) in order to ensure that
the constraints are met, e.g. the centroids sit at the desired positions. This probably cannot be
worked through in closed form in all cases: even though we have strived to put the Lagrange
multipliers in a consistent and intuitive form (written as w, s and t in sections 2, 3 and 4) their
values may need to be found numerically, in general, for the DFT and FS.

The analogues of Hermite–Gaussians that were defined in sections 3 and 4 have a number
of interesting properties and potential applications. In the case of the DFT, for example, it can
be shown that the eigenstates discussed in section 3 have simple self-Fourier properties much
like the conventional Hermite–Gaussians. The complete collection of basis sets (with different
values of σa , µa and µA) clearly brings the option for more effective decompositions for a
wide range of sequences. As alluded to in the introduction, it also enables some new variants
of the fractional DFT to be considered. Of course, Gaussian functions have other interesting
properties that help to make them so ubiquitous. For example, their minimum uncertainty
character makes them ideal window functions for windowed Fourier transformations in time–
frequency analysis. Such optimal windows are now also available for the DFT and the FS.
It is the analysis involving Lagrange multipliers and the subsequent reduction to the standard
forms given in equations (3.14) and (4.8) (as inspired by equations (2.11) and (2.12)) that
enable all of these developments.
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